先前提及过。
在微观物理中。
基本粒子可以分成四类:
夸克,轻子,规范玻色子,以及higgs粒子。
而夸克由于夸克静闭的缘故,是没法单独存在的。
因此在微观领域,夸克主要是成双成三的存在:
比如一个正夸克和一个反夸克构成一个介子。
或者三个夸克或者三个反夸克构成一個重子。
重子和介子统称为强子,比如我们熟知的质子和中子就属于重子。
除此以外。
超子也是重子的一种。
它的特殊之处是至少含有一个奇异夸克,可以通过研究超子来理解重子的相互作用方式。
目前发现的超子种类有很多。
比如Σ超子、Ξ超子,Ω超子等等。
没错。
想必有些同学已经想起来了。
《异世界征服手册》中,兔子们用来轰开青城山天宫秘境的粒子束,使用的就是Ω超子。
而不久前赵政国院士他们观测到的Λ超子,同样也是属于以上的范畴。
看到这里。
很多人可能有些懵圈了:
虽然这些内容看起来很好理解,但Λ超子到底有啥具体意义呢?
Λ超子理论上的意义其实有很多。
比如它有可能协助发现传说中的第五种力。
又比如对暗物质与暗能量探测有帮助。
又甚至能够研究中子星等等。
而在现实中。
最直接的影响就是你我用到的手机。
目前所有的手机都会用到量子理论的知识,因为手机大部分核心部件都用到半导体,半导体材料的性能要根据量子力学进行推算优化。
例如pn结当中存在一个gap。
按照通俗的理解就是,电势能大于电子的动能,正常理解下电子是不可能穿过这个gap的。
但是在量子力学的范畴下,允许电子有一定的概率发生跃迁,这个现象叫电子的隧穿。
电子隧道显微镜利用的就是这个原理。可以看到材料表面的势能起伏。
进而推断材料表面结构,最终进行半导体研发。
比如目前三星已经卖了一款搭载光量子芯片的手机gaxyaantu,也就卖五百多刀。
光量子芯片用来产生量子随机数,保证加密算法在物理上绝对安全,这也算是未来的一类趋势。
因此微观的粒子研究其实和我们现实是息息相关的,只是由于最终产品是一个完整态的缘故,内中的很多技术大家存在一定的信息壁垒罢了。
而比起其他超子。
Λ超子还要更为特殊一些。
它是一类非常特殊的超子,它在核物质中的单粒子位阱深度是目前所有已知微粒中最深的。
说句人话错了,通俗点的话。
它可以算是可控核聚变中非常关键的一道基础。
因此目前各国对它的重视度都非常高,几大头部国家一年的相关经费都是一到两个亿起步。
视线在回归原处。
赵院士他们的这次观测徐云倒是有所耳闻,衰变事例的最大极化度突破了26,还是目前全球首破。
也算是个不大不小的新闻了。
不过要知道。
在赵院士他们首破之前,国际上的最大极化度便达到了25。
因此他们的首破在概念意义上是要大于实际意义的,只能领先半个身位的样子。
但眼下徐云手中的这道公式,似乎指向的是另一个轨道:
别忘了。
二者相近的结合能数字,实际上是徐云将y(xn1)改成了y(xn2)后的结果。
换而言之。
在y(xn1)这个轨道上,理论上是存在另一个不同量级的Λ超子的。
想到这里。
徐云的好奇心愈发浓烈了。
随后他再次切换到极光系统,将4685Λ超子的编号入了进去。
片刻过后。
一堆衰变事例样本出现在了他面前。
微粒信息不像是其他研究,其自身是不需要太过考虑保密度的。
因为前端粒子的研究和现代技术之间存在着不小的差异,你很难将某个微粒的发现直接扩展成某种技术,没有太大的保密价值。
所以在发现了新型微粒或者相关信息后,发现人基本上都会大大方方的将所有信息公开。
赵政国院士上传的衰变样本一共有37张,分成了六个档案。
其中标注了不少的衰变参数,外加其他一些鲜为人同学看起来如同天文数字、但实际上却很重要的数据信息。
Λ超子的观测方式是粒子对撞,而说起粒子对撞,很多人脑海中的第一反应都是‘百亿级’、‘高精尖’之类特别有逼格的词儿。
但你要说粒子对撞机到底有啥用,不少人可能就说不上来了。
其实这玩意的原理很简单:
你想研究一个橘子,但你却有一栋楼那么粗的手指。
你感觉得到它,却看不到它。
你想捏碎它,却发现它总是狡猾的藏在你手指的缝隙里。
它小到你没办法碰触它,更不要提如何剥开它了。
直到有一天你忽然来了个灵感,用一堆橘子去撞另一堆橘子。
于是乎。
它们碎了。
你感觉到了橘子核、汁液、橘子皮。
又于是乎。
你知道了一个橘子是这样的,有橘子核、汁液、橘子皮。
这其实就是对撞机的本质。
在微观领域中,橘子的汁液变成了各种带电或者不带电的粒子。
伱想要将它们分开,就要付出一定的能量也就是两大袋橘子碰撞的力量。
那么不同的尺度上分离