当前位置:矫情书院>游戏竞技>走进不科学> 第三百零五章 高斯的宝藏(中)(7.6K)
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第三百零五章 高斯的宝藏(中)(7.6K)(2 / 3)

被一个叫哈维的医生偷走了真的脑子,并且切成了240块。

直到老爱去世四十二年后,哈维才将老爱的大脑切片交给普林斯顿大学医院。

这也是后世有些小说会调侃切片的真正根由,虽然估摸着很多写到“切片”二字的作者本人并不知道这么回事

想到这里。

徐云不由幽幽叹了口气,将思绪收回到现实。

他先是从身上取出了实验室用的手套——这年头的手套都是加了碱式碳酸铅的乳胶手套,成本相对较高,所以做无毒实验的时候基本上都是自带并且反复使用。

戴好手套后。

徐云便弯下身,开始翻找起了高斯的手稿。

“高等分析随想”

“拓扑学中的欧拉示性数问题”

“复变函数论的路径释疑”

高斯放在皮箱里的手稿很多,名目极其复杂,不过徐云的目标却也相当明确:

他只想要那些后世遗失或者有特殊意义的手稿原件。

至于非欧几何这种1850年没发布、但后世已经完全形成体系的手稿,绝非他此行的目标。

过了一会儿。

徐云忽然眼前一亮,拿出了一卷比较靠内的手稿:

“咦?”

只见这份手稿的封条上,赫然写着一行字:

《亲和数计算》。

亲和数。

这个词的英文名叫做friendlynuber,所以有时候也会被翻译成友好数或者相亲数。

它的释意很简单:

彼此的全部约数之和(本身除外)与另一方相等的两个正整数,比如220和284。

举个例子。

上过小学的朋友应该都知道。

220的约数为:

1、2、4、5、10、11、20、22、44、55、110,和为284;

而284约数为:

1、2、4、71、142,和正好为220。

故220和284是一对亲和数。

这个词最早出现在公元前320年,源自西方文明发源地之一的古希腊。

当时的学术巨头毕达哥拉斯对数论的研究深不可测,他是“万物皆数”的提出者。

他的门徒受他影响,对数的研究更是“走火入魔”,尝试从世界的任何事物中寻找数。

结果一天。

他的门徒突发奇想,问了毕达哥拉斯一个问题:

老师,我结交朋友时,会存在数的关系吗?

结果毕达哥拉斯说了一句很有名的话:

朋友是你灵魂的倩影,要像220与284一样亲密,我中有你,你中有我。

这句话,便是亲和数的万恶之源。

亲和数问世以后毕教主并没有歇着,而是带领着毕氏学派乘机大肆宣扬起了“万物皆数”。

不过很尴尬的是。

毕教主宣传了几十年,研究了几十年,亲和数依然还是只有220和284。

直到毕教主去世,人们对于亲和数的认知依然停留在220和284。

而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。

所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。

随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。

直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:

无穷的自然数中亲和数一定不止一对!

他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。

而是从一般规律出发,试图找到亲和数的通用公式。

这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。

不过功夫不负有心人,后来他总算归纳出了一个规律:

这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。

比如取x2,那么a5,b11,c71。

所以2x2x5x11220和2x2x71284为一对亲和数。

结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。

从这里起,故事开始有意思了起来…

自那以后。

数学家们不再没有头绪的寻找亲和数。

而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。

但遗憾的是。

在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到  这也就是说。

在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!

这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。

这位“业余数学家”实在看不下去了,白天养家糊口,晚上计算亲和数,算的脑瓜子嗡嗡的。

最终在他算的满头白发的时候,终于找到了第二对亲和数:

17296和18416。

接着继费马之后,笛卡尔也计算出了第三对亲和数:

9437056和9363584。

然后就是大挂逼、人形自走手稿打印机欧拉的登场:

他在1747年也就是自己39岁的时候,一口气找到了30对亲和数!

接着大家还没有反应过来,甚至来不及鼓掌,他又宣布再次找到了30对  但到了这一步,亲和数就僵住了:

直到1923年,数学家麦达其和叶维勒才会出其不意、明修栈道暗度陈仓。

他们一口气将亲和数扩展到了1095对,其中最大的甚至达到了25位数。

在1747年到1923年之间,

上一页 目录 +书签 下一页